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Preamble: This talk is based on my thesis, which is still in progress. It’s a hard topic to
give a satisfying talk on because the objects I want to talk about have a lot of moving parts,
which can be hard to keep in your head. Please stop me and ask if you get confused about
anything.

1 Review of the de Rham-Witt complex
Setup: Let k be a perfect field of characteristic p, W = W (k), and σ : W → W the Witt
vector Frobenius. Let X be a k-scheme; we will sometimes take X = SpecR.

As Joe explained last month, algebraic de Rham cohomology can be described not only as
the hypercohomology of the de Rham complex, but also (in characteristic 0) via the formalism
of the infinitesimal site. Crystalline cohomology is ordinarily defined via the crystalline site,
which is a souped-up version of the infinitesimal site. The de Rham-Witt complex completes
the square below.

cohomology theory de Rham (char 0) crystalline
explicit construction de Rham complex de Rham-Witt complex
abstract description infinitesimal site crystalline site

My project is on the de Rham-Witt complex. It does require a number of inputs from the
classical crystalline theory, but since I don’t expect everyone to have read Arthur’s book (yet),
I will do my best to black-box these inputs.

The de Rham-Witt complex of X/k is defined as the initial object in a rather complicated
category. Rather than giving its full definition, I will just outline what kinds of structure it
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has, and some of the key conditions we impose. It contains the data:

...

R
����

...

R
����

W2OX d //

R
����

W2Ω
1
X

d //

R
����

· · ·

W1OX d //W1Ω
1
X

d // · · ·

Here each WrΩ
i
X is a sheaf of WrOX-modules, with Wr(k)-linear differentials and vertical

quotient maps. (The bottom row is just the de Rham complex of X, and the leftmost column
is the sheaf of Witt vectors of OX .) Additionally, each row has a multiplication map making it
a cdga. Finally, each column has maps F going down and V going up, satisfying the following
relations:

(a) FV = V F = p

(b) dF = pFd, V d = pdV , FdV = d,

(c) F (a) = σ(a) and V (a) = pσ−1(a) for a ∈ W ,

and various others.

The complex WΩ•X is defined as limrWrΩ
•
X . The F, V, and d operators and the multipli-

cation map pass to the inverse limit, and they have the same relations as above. Given WΩ•X
with all of these operators, we can recover WrΩ

•
X as its quotient by the images of V r and dV r.

In practice, we pass betweenWΩ•X and (WrΩ
•
X)r more or less freely, but one must be somewhat

cautious about what operations do and don’t commute with the limit.

Remark 1.1. The condition dF = pFd says that F is a divided Frobenius—namely, that the
endomorphism given by φ = pnF in degree n commutes with d. This is the map that gives rise
to the semilinear Frobenius operator φ on crystalline cohomology.

Theorem 1.2. If X/k is smooth, the hypercohomology of the de Rham-Witt complex computes
crystalline cohomology. More precisely, we have isomorphisms

Rur∗(OX/Wr,cris)
∼= WrΩ

•
X

Ru∗(OX/W,cris) ∼= WΩ•X

in D(Ab(X)), where ur : (X/Wr)cris → XZar and u : (X/W )cris → XZar are the usual morphisms
of sites. After applying RiΓ, these become isomorphisms

H∗cris(X/Wr) ∼= H∗(WrΩ
•
X)

H∗cris(X/W ) ∼= H∗(WΩ•X).
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2 Recap of BLM
Bhatt-Lurie-Mathew introduces the so-called saturated de Rham-Witt complex W Ω∗X of an
Fp-scheme X, which agrees with the classical one for X/k smooth, but not in general. (The
curly W distinguishes it from the classical one.) This is constructed affine-locally and over the
absolute base Fp, so we will work with an Fp-algebra R instead of a k-scheme X.1 The key
categories involved are as follows.

Definition 2.1. A Dieudonné complex is a complex M∗ of abelian groups equipped with an
endomorphism F : M i → M i for each i such that dF = pFd. The category of Dieudonné
complexes is denoted DC.

The categoryDC has an important subcategoryDCstr, called the category of strict Dieudonné
complexes, which are particularly nice:

• p-torsionfree

• have a Verschiebung map V satisfying the properties mentioned earlier, and

• complete: M∗ = limrWrM
∗, where WrM

∗ = M∗/(imV n + im dV n).

The inclusion DCstr ↪→ DC has a left-adjoint W Sat, called “strictification”.

Definition 2.2. 1. The saturated de Rham-Witt complex functorW Ω∗− : Fp− alg→ DAstr

is defined as the left-adjoint to the functor

A∗ 7→ A0/V A0,

where DAstr is the category of “strict Dieudonné algebras”; i.e. commutative algebra
objects in DCstr satisfying a few extra (mild) conditions.

2. If X is an Fp-scheme, we let W Ω∗X be the sheaf defined on affines by R 7→ W Ω∗R.

Bhatt-Lurie-Mathew gives two ways to constructW Ω∗R, both of which involve writing down
certain de Rham complexes, giving them the structure of a Dieudonné complex, and then
applying W Sat.

Theorem 2.3. (BLM, Ogus) Suppose X is an Fp-scheme, smooth over some perfect field k.

1. The saturated de Rham-Witt complex W Ω∗X agrees with the classical one WΩ∗X/k.

2. Its hypercohomology computes crystalline cohomology.

(Part 1 is proved in BLM; part 2 follows from part 1 and Illusie’s classical comparison, and
is also proved independently in the 2020 update to BLM and by Ogus.) However, when X is not
smooth over a perfect field, the classical and saturated de Rham-Witt complexes are generally
different, and one hopes that that the saturated one should be “better” in some sense.

1It turns out that the de Rham-Witt complex doesn’t depend on your choice of a base field, provided it’s
perfect of characteristic p and your scheme is defined over it. This is analogous to the statement that if R is a
k-algebra for k perfect, then Ω∗

R/k = Ω∗
R/Z, because if x ∈ k then dx = d((x1/p)p) = px(p−1)/pdx1/p = 0.
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3 My project
After the classical de Rham-Witt complex was introduced in the late 1970s, there was a flurry
of work to generalize its construction, understand its structure, and study its implications for
crystalline cohomology. The goal of my project is to take a baby step towards doing the same
within the framework of Bhatt-Lurie-Mathew.

Setup: let R be an Fp-algebra, and (E , φE) a unit-root F-crystal on SpecR. We would like
to define a saturated de Rham-Witt complex on SpecR with coefficients in E . (The classical
version of this was done by Étesse in 1987.)

For people who are less familiar, I won’t give the full definition of a unit-root F-crystal, but
let me say a few words about what they are like. A crystal is a special kind of sheaf on the
crystalline site. In particular, it’s a sheaf where you can take sections on not just open sub-
schemes of SpecR, but also on nilpotent thickenings of these equipped with divided power
structures. For example, we can evaluate E on SpecWr(R), or on SpecA/prA if A is a lift of R
with Frobenius. The crystalline structure sheaf OX/Zp is the sheaf T 7→ OT (T ).

An F-crystal is a finite locally free OX/Zp-module endowed with a semilinear Frobenius en-
domorphism; it is unit-root if this Frobenius is an isomorphism. In particular, the motivation
for studying unit-root F-crystals in this project is that they’re more or less the smallest interest-
ing class of F-crystals beyond the trivial crystal. They don’t contain much arithmetic content
because their slopes are all zero, and they don’t contain much geometric content because they’re
locally free. What they do have is monodromy:

Theorem 3.1. (Katz, Crew) If X/k is smooth, then there is an equivalence of categories

{étale Zp − local systems on X} ↔ {unit-root F-crystals on X}

given by
L = (Ln)n 7→ (L• ⊗Z/p•Z OX/Zp , F = id⊗F ).

3.1 de Rham-Witt modules

What kind of object should W Ω∗R,E be?

• First of all, it should be a strict Dieudonné complex.

• Since E is a module over the trivial crystal OSpecR/Zp , W Ω∗R,E should be a module over
W Ω∗R =W Ω∗R,O in DCstr.

• It should also receive a map from E in some sense–this reflects the fact that WΩ0
R =

W (R) = limrOR/Zp(Wr(R)).

Definition 3.2. A de Rham-Witt module over (R, E) is a collection of the following data: a
W Ω∗R-module M∗ in DCstr, equipped with Wr(R)-linear maps ιr : E(Wr(R)) → WrM

0 for
each r, such that:
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1. The ιr are compatible with the quotient and Frobenius maps on its source and target.

2. (Compatibility with differential) The maps ιr extend to maps of dg-Ω∗Wr(R),γ-modules

ι∗r : (E(Wr(R))⊗Wr(R) Ω∗Wr(R),γ,∇)→ (WrM
∗, d),

where the left side is the PD-de Rham complex associated to E . (The target is a graded
Ω∗Wr(R),γ-module, so there exists a unique such map of graded modules, and we are de-
manding that it be compatible with the differentials.)

A morphism of de Rham-Witt modules over (R, E) is a morphism f : M∗ → N∗ of strictW Ω∗R-
modules such that ιr,N =Wr(f

0) ◦ ιr,M for each r. We call the resulting category dRWMR,E .

Definition 3.3. The saturated de Rham-Witt complex associated to E over R, W Ω∗R,E , is the
initial object of dRWMR,E , assuming this exists.

Goal 3.4. Prove that this always exists, and when R is smooth over a perfect field k it agrees
with the classical version WΩ∗R,E and computes the cohomology of E .

Useful facts:

1. (Sanity check: the trivial crystal) The saturated de Rham-Witt complex of E = O over
R is W Ω∗R, viewed as a module over itself, with suitable maps ιr. (So W Ω∗R satisfies not
only BLM’s universal property as an algebra, but also our new universal property as a
module over itself.)

2. (Functorialities) The category dRWMR,E is functorial in R and in E . That is:

(a) Given a morphism f : SpecR′ → SpecR of affine Fp-schemes and E on SpecR, we
have a functor f∗ : dRWMR′,f∗crisE → dRWMR,E .

(b) Given a morphism g : E → E ′ of unit-root F-crystals on SpecR, we have a functor
g∗ : dRWMR,E ′ → dRWMR,E .

Both functorialities act as the identity on the underlying strict Dieudonné complexes, and
are defined by pushing forward the module structures and/or composing the ι maps with
other maps as necessary.

3. (Insensitivity to nilpotent thickenings) If E is a unit-root F-crystal on SpecR and f :
SpecRred ↪→ SpecR is the natural closed embedding, then the functor

f∗ : dRWMRred,f
∗
crisE → dRWMR,E

is an equivalence of categories.

4. (Étale base change) If W Ω∗R,E exists, then W Ω∗S,f∗crisE exists for every étale map f :
SpecS → SpecR. Moreover,

S 7→ Wr Ω∗S,f∗crisE

defines a quasicoherent sheaf on the étale site of SpecWr(R) (= that of SpecR). This
lets us make sense of W Ω∗X,E as a sheaf when X is not necessarily affine.
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and so on.

Problem: when E 6= O, there’s no obvious construction of an initial de Rham-Witt mod-
ule. The natural thing to try would be as follows: give limr(E(Wr(R)) ⊗Wr(R) Ω∗Wr(R),γ) the
structure of a Dieudonné complex and take its strictification. But I spent an entire summer
working on this, and I couldn’t make the very first step work: the degree-0 part limr E(Wr(R))
comes with a Frobenius, but I couldn’t endow the higher-degree terms with the right divided
Frobenius operators.

Instead, as is often the case in crystalline cohomology, we’ll have to work with a lift.

3.2 de Rham-Witt lift modules

Setup: Let R be an Fp-algebra and E a unit-root F-crystal on SpecR, as usual. Suppose A is
a p-torsionfree ring with A/pA ∼→ R, and suppose we have a lift of Frobenius φ : A → A. Set
Ar = A/prA.

Definition 3.5. We define the category dRWLMA,E of de Rham-Witt lift modules over (A, E)
exactly as we did with dRWMR,E , but replacing Wr(R) with Ar.

This category is less canonical than dRWMR,E , since it depends on the data of a lift with
Frobenius. However, the following two propositions make it useful for constructing our saturated
de Rham-Witt complexes.

Proposition 3.6. The category dRWLMA,E has an initial object, whose underlying Dieudonné
complex is W Sat(limr(E(Ar)⊗Ar Ω∗Ar,γ

)).

Proposition 3.7. There is a canonical equivalence of categories dRWMR,E → dRWLMA,E .

3.3 Main results

Theorem∗ 3.8. Suppose R is a k-algebra, and E is a unit-root F-crystal on SpecR which is
defined over a finitely generated subalgebra. Then W Ω∗R,E exists.

Proof sketch: Reduce to the case where R is reduced and finitely generated over k. In this
case, embed SpecR in An

k , and this in An
W . Build a p-torsionfree PD-envelope Spec D̃ of

SpecR ↪→ An
W . Then we have a nilpotent thickening g : SpecR ↪→ Spec D̃/p. Build an

F-crystal F on Spec D̃/p with g∗crisF = E . Then we have equivalences of categories

dRWMR,E ' dRWMD̃/p,F ' dRWLMD̃,F ,

and the last of these categories has an initial object.

Future Theorem 3.9. Suppose X is a smooth k-scheme and E is a unit-root F-crystal on X.
Then:

1. W Ω∗X,E agrees with the classical de Rham-Witt complex WΩ∗X,E , and

6



2. W Ω∗X,E computes the cohomology of E.

Proof sketch: for (1), the case E = O is done by Bhatt-Lurie-Mathew. In general, Katz’s
theorem tells us that E = O ⊗ L for some Zp-local system L, and then we have

WΩ∗X,E = WΩ∗X ⊗ L =W Ω∗X ⊗ L =W Ω∗X,E .

The problem is that this really must be interpreted in terms of strict Dieudonné complexes
valued in sheaves. Up until now, we’ve done everything affine-locally, and we were always able
to simply work with Dieudonné complexes and show after the fact that they define sheaves.
Joe Stahl and I have thought a lot about Dieudonné complexes valued in sheaves, but there are
still some technical issues to be worked out surrounding the symmetric monoidal structure on
strict Dieudonné complexes of sheaves.

As before, (2) follows from (1) and the classical comparison theorem. Another approach I’m
working on is to imitate Ogus’s proof that W Ω∗X computes the crystalline cohomology of X.
Namely, the construction above exhibitsW Ω∗R,E as a strictified PD-de Rham complex of F over
the formal PD-thickening SpecR ↪→ Spf D̃; we can compare this to (the strictification of) the
classical de Rham complex

E(D̃)⊗̂AΩ∗A/W

associated to the smooth embedding SpecR ↪→ SpecA. The latter is known to compute
crystalline cohomology by the classical theory.
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